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Abstract — The minimum variance performance
measure is applied to two diabetic patient mod-
els under simulated fault scenarios. The Bergman
Model and the Automated Insulin Dosage Advisor
(AIDA), are controlled in the Internal Model Con-
trol (IMC) framework to achieve adequate blood
glucose levels. The focus of this paper is to re-
flect the importance and feasibility of implement-
ing a detection and diagnosis tool such as the min-
imum variance performance benchmark to an im-
plantable device for diabetics to guarantee ade-
quate control of blood glucose levels.

Keywords- diabetes, Internal Model Control, mini-
mum variance, performance assessment

I. INTRODUCTION

With the advent of implantable insulin infusion pumps,
normoglycaemia can be approached to help prevent di-
abetic complications [1]. However, like any mechanical
device, malfunction is unavoidable and a measure of per-
formance is necessary to detect any failure that could po-
tentially violate the hypoglycaemic and hyperglycaemic
bounds of the diabetic patient. In this paper, we consider
two diabetic patient models, the Bergman model and the
Automated Insulin Dosage Advisor (AIDA), which are
controlled in the Internal Model Control (IMC) frame-
work to maintain proper glucose levels. The performance
of these models is assessed using the Harris minimum vari-
ance performance benchmark. Fault scenarios are pro-
posed and simulated for the models to assess controller
performance degradation.

With any model used for control design, it is essential
to capture the most important dynamics of the system.
This is the goal of both the Bergman and the AIDA mod-
els. Due to the simplicity of these models, a model-based
control strategy can be implemented with a first order
approximation of both models. The performance of these
single-input single-output systems can be assessed in con-
junction with a process delay that is due to the dynamics
of the glucose sensor.

A. Bergman Model

The Bergman and AIDA models both utilize a “minimal
model” approach to quantify the physiology of glucose and
insulin. The Bergman Model is a two compartment model
of glucose and insulin interactions [2]. The glucose pool
accounts for glucose disappearance in the system (Equa-
tion (1)) while the insulin compartment describes insulin

kinetics in the model, (Equation (2)). Insulin enters the
system intravenously to mediate glucose uptake and pro-
duction in the liver and periphery tissues. The model is
described by the following equations:
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where, X(t) represents insulin in the remote insulin com-
partment and I(t) models the second phase insulin kinetics
in the model. The parameters of the model are P, Ps,
Ps, n, h, and v. The insulin sensitivity parameter, Sy, is
given by —P5/P, to represent the rate of glucose disap-
pearance with respect to insulin concentration. The beta
cell sensitivity of an individual is characterized by the
first phase, P;/AG, and second phase, v, sensitivity to
glucose. The parameters n and h represent the time con-
stant for insulin disappearance and the glucose threshold
level, respectively. The fundamental nature of the model
allows a quantitative assessment of the insulin and beta
cell sensitivities of the diabetic patient.

B. Automated Insulin Dosage Advisor (AIDA)

The Automated Insulin Dosage Advisor (AIDA) is a
three compartment model that was proposed by Lehmann
and Deutsch to reflect the physiology of insulin action and
carbohydrate absorption [3]. This model provides a 24-
hour profile of glucose and insulin dynamics. The plasma
insulin compartment represents the subcutaneous insulin
absorption dynamics from an injection. The active insulin
compartment contributes to the peripheral glucose uptake
and the net hepatic glucose balance. The plasma glucose
compartment is responsible for the overall glucose balance
in the system. The simplicity of the model allows a patient
to be characterized by two parameters which represent the
hepatic, Sp, and peripheral, S, insulin sensitivities of an
individual. Unique to this model is the characterization of
the meal input by a trapezoidal time dependent function.
The insulin dynamics of the model are given by:
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T50 =aD + b
Toss(t) = Io(t) + L (t — 24) + L, (t — 48) (5)
L,(t) = ’“21T(t) (6)

where, k1, k2, and k. represent insulin pharmacodynamic
parameters and insulin elimination parameters, respec-
tively. The subcutaneous insulin dynamics are given by
the insulin absorption dynamics, I,4s(t) and the half-life
for insulin absorption, T5¢. Parameters, a, b and s char-
acterize how the dose of insulin injected, D, varies with
the type of insulin administered to the patient [4]. I,
represents the insulin level in equillibrium with I, ;. The
glucose dynamics, G, are given below:

dG _ Gin(t) + NHGB(t) = Gour(t) = Grenlt) -
== - (7)
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Gin - gabngut (10)

Gren = GFR(G — RTQ) (11)
Equation (8) represents the overall rate of peripheral
and insulin-independent glucose utilization where GI is
the insulin-independent glucose utilization with reference
value equal to GX, and K, and ¢ are the Michaelis
Menten constant and peripheral glucose utilisation per in-
sulin amount, respectively. The glucose amount in the gut
after a meal intake is a function of the trapezoidal gastric
emptying function, Gepmpe. The glucose input from the
gut wall, G;,, is a function of G4, with rate constant,
Kgaps, for glucose absorption from the gut. The renal
threshold of glucose, RT'G, and the glomerular filtration
rate, GF R, describe the rate of renal glucose excretion in
the body. All of these affect the time course of glucose
given by (7) which is also a function of the net hepatic
glucose balance, NHGB.

In both models, neither glucagon dynamics nor the ef-
fects of exercise and other physiological states are consid-
ered in the system representation.

C. Internal Model Control

Internal Model Control (IMC') is the framework used
to maintain adequate blood glucose levels, 70 —100mg/dl,
in the diabetic system [5]. Therefore, a good approxima-
tion of the diabetic patient will determine the capability
of the controller. In the IMC framework, the concept of
perfect control is possible if the controller is designed as an
exact inversion of the process with a known disturbance.

In reality, this is never the case and the best approxima-
tion of the process must be made to achieve reasonable
performance.

A first order approximation, g(s), of both the Bergman
and AIDA models is used for the control strategy. Since
the model transfer function is invertible, the controller,
¢(s), is given by:

1
c(s) = %f(s) (12)
1
f(s) = m (13)

where f(s) is a filter with tuning parameters A and n such
that ¢(s) is proper. The IMC strategy does not address
input constraints, however, adequate blood glucose levels
are acheived using this model-based control strategy.

D. Performance Monitoring

The foundation of controller performance monitoring
tools are derived from the Harris minimum variance per-
formance benchmark [6]. The idea behind this approach
is that the process can be described by a linear transfer
function with an additive disturbance, Dy, as in (14).

wlg ')g (14)

Yt = WUt+Dt

where, w and ¢ are polynomials in the backshift opera-
tor, ¢~ '. The linear feedback controller, Uy, is given by
(12). With knowledge of the process delay, d, a time-series
model is fit to the output data as in (15), where f is the

time series coefficient and a; is a white noise sequence [7].
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Equation (15) can be separated into two parts. The first
part, e;, represents the minimum variance portion of the
output data where values preceding the system delay are
invariant of feedback control. The second part represents
the portion of the output data after the delay which is
dependent on the controller. Once the delay of the system
is known, the performance index can be determined as
the ratio of the minimum variance, o2, to the actual
variance, o, [8]: 2

n(d) = ¢ (16)

2
Ty

A value of n(d) close to zero indicates the potential to im-
prove controller performance [9]. This can be approached
by re-tuning the controller, changing the control strategy,
or re-designing the process. Values of 7(d) near one indi-
cate optimal controller performance in terms of minimum
variance control. The main limitations of the minimum
variance performance index are:

1. The performance index only addresses the process

delay as the performance limiting factor.



2. Minimum variance may not be the control objective.
3. Extensions to the multivariate problem are difficult
in characterizing the process delay.

More intricate measures would require more process in-
formation of the process which may not be feasible.

II. RESULTS AND DISCUSSION

Several variables can contribute to insulin pump fail-
ure. Any change in the overall system behavior (patient,
pump, or sensor) will lead to performance degradation.
Problems can arise as a result of a faulty glucose sen-
sor that can yield biased and unreliable measurements.
Depending on the insulin used and storage conditions, in-
sulin aggregation could clog the pump and prevent proper
insulin dosage. On the other hand, the controller could
fail which would also yield improper insulin administra-
tion to the patient. Along those lines, patient variability
may cause drifts/changes in model parameters that will
contribute to controller failure.

Within the IMC framework, both the Bergman and
AIDA models can be controlled within acceptable toler-
ances. The simulated faults are stochastic disturbances
with zero mean noise and variance, o2. Glucose sensor
failure is simulated by introducing the disturbance to the
sensor measurement. To simulate controller failure, a dis-
turbance is introduced to the system as the insulin input
to the patient. Once the faults are introduced to the sys-
tem, the data is filtered to remove the effects of the meal
disturbance by computing the residual between the nom-
inal plant and the perturbed plant. An Auto-regressive
Moving Average (ARM A) time series model is fit to the
output data and the performance index is determined.

A. Bergman Model

1. Glucose Sensor Failure-Figure 1 depicts a one week
simulation of the diabetic patient with three 50g
meals each day. The fault is introduced on day four to
compare the nominal pump operation with the mal-
functioning pump performance. With the introduc-
tion of the sensor failure, severe oscillations are ob-
served in the glucose profile. As a result of improper
glucose measurements, the mean performance index
decreases 40 percent from the nominal.

2. Controller Failure— Figure 2 depicts a one week pro-
file of the Bergman model with the controller failure
beginning on day four. Most notable is the absence
of any disturbance in the glucose profile. While this
does not indicate a fault in the sytem, the plot of the
performance index is able to detect improper insulin
administration to the patient model due to excessive
control action. This is observed by the severe oscil-
lations in the index and notable performance degra-
dation.
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Fig. 1. Effect of glucose sensor failure on glucose profile (top) and

preformance index (bottom).
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Fig. 2. Effect of controller failure on glucose profile (top) and
performance index (bottom).

For the AIDA model, glucose sensor failure is simulated
by the introduction of the disturbance to the sensor mea-
surement, as in the Bergman model. To evaluate the sen-
sitivity of the AIDA model to variations in parameters
such as the hepatic insulin sensitivity, Sy, the parameter
was varied from 0 to 1 throughout the course of a 24 hour
day. Sensitivity values near 0 indicate a patient insensi-
tive to insulin with little impact on glucose levels whereas
an Sj value near 1 indicates a high correlation between
insulin and glucose levels.

B. AIDA Model

1. Glucose Sensor Fuailure-Figure 3 shows a 24 hour
profile of a diabetic patient with three 50g meals per
day. At 1600 hrs, the glucose sensor fails producing
the variations seen in the glucose profile. As a result,
the performance index decreases with an oscillatory
nature, indicative of preformance degradation in the
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Fig. 3. Effect of glucose sensor failure on glucose profile (top) and
performance index (bottom) ((dashed)-nominal model, (solid)-
perturbed model).

2. Variation in hepatic insulin sensitivity, Sp—Figure 4
is a 24 hour profile of a diabetic patient that is almost
completely insensitive to insulin in the hepatic tissue,
Sp = 0.1. As a result, the glucose levels remain quite
high. Over time, the patient becomes more sensi-
tive to insulin resulting in lower blood glucose levels.
Consequently, the glucose profile indicates better reg-
ulation of levels and this manifests itself in the per-
formance index calculation.
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Fig. 4. Effect of parameter variation, S, on glucose profile (top)
and performance index (bottom) ((dashed)-nominal model,
(solid)-perturbed model).

Oscillations and abrupt changes in the mean performance
index may indicate faults requiring immediate attention
e.g., sensor and controller failure. In contrast, gradual
deviations from the mean performance index showing a
trend may indicate less series faults that over time could
get worse e.g., parameter drifts.

III. CONCLUSIONS

Both the Bergman and AIDA models provide bench-
mark simulations of the diabetic patient system. Further
work in quantifying higher order dynamics such as the ef-
fects of glucagon, exercise or stress in the system is neces-
sary not only from a modeling perspective but, also in the
development of an effective control algorithm. Using IMC
for both patient systems provides the basis for a more ad-
vanced control strategy, such as Model Predictive Control
(MPC). The key in controlling diabetes is the minimiza-
tion of the hypoglycaemic and hyperglycemic excursions
in the glucose profile of the patient. Model Predictive
Control has had success in handling input and output
constraints in diabetes applications [10]. The diabetic
process warrants the use of an MPC algorithm to pre-
vent complications such as coma, death and retinopathy
as a direct result of violating these bounds. In regulating
the system, at all times, the safety of the patient must
be guaranteed by monitoring the performance of the con-
troller. At present, the Harris minimum variance bench-
mark provides a tool that has been widely implemented
and practiced to assess controller performance.
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